

UNCLASSIFIED

LOS ALAMOS SCIENTIFIC LABORATORY of the UNIVERSITY OF CALIFORNIA

Report Written: September 1951

PUBLICLY RELEASABLE Per [] BROWN . FSS-16 Date: 1-8-95

CIC-14 Date: 11-15-95

LA-1325

This document consists of 11 pages 7_Copies, Series_A

> THE CRYSTAL STRUCTURE OF GAMMA PLUTONIUM

> > by

W. H. Zachariasen

Classification changed to UNCLASSIFIED Commission, Classification changed to UNCLASSIFIED

TECHNOLOGY - PLUTONIUM

UNCLASSIFIED

TECHNOLOGY - PLUTONIUM

Distributed: FEB 2 1952	LA -1325
Los Alamos Report Library	1-20
J R. Oppenheimer	21
Argonne National Laboratory	22-25
Atomic Energy Commission, Washington	26-29
Carbide and Carbon Chemicals Company (ORNL)	30-33
Chicago Patent Group	34
Dow Chemical Company (Rocky Flats)	35
duPont Company	36-40
General Electric Company, Richland	41-44
Hanford Operations Office	45
Iowa State College	46
Knolls Atomic Power Laboratory	47-50
Patent Branch, Washington	51
Savannah River Operations Office	52
Technical Information Service, Oak Ridge	53 67



ABSTRACT

Gamma plutonium is found to be orthorhombic with eight atoms in a unit cell of dimensions (at 226° C) $a_1 = 3.1518$ kX, $a_2 = 5.7568$ kX, $a_3 = 10.142$ kX. The calculated density is 17.13. The space group is Fddd and the positions of the eight atoms are: (000) (01/21/2) (1/201/2) (1/21/20) (1/41/41/4) (1/43/43/4) (3/41/43/4) (3/43/41/4).

Each plutonium atom is bonded to ten others at an average distance of 3.152~kX, four being at 3.020~kX, two at 3.152~kX and four at 3.285~kX.

The coefficients of thermal expansion are found to be $\alpha_{100} = -22.5 \times 10^{-6}$, $\alpha_{010} = +47 \times 10^{-6}$, $\alpha_{001} = +94 \times 10^{-6}$.

UNCLASSIFIED

ACKNOWLEDGEMENT

The X-ray diffraction patterns upon which this investigation is based were taken by Finlay Ellinger and measured by Marian Gibbs.

The author is also indebted to Eric R. Jette, CMR Division, and to A. S. Coffinberry, Group CMR-5, for having provided the opportunity for this investigation to be carried out.

UNCLASSIFIED

ADDDOVED FOR DUDITO DELEASE

The crystal structure is known for only two of the five allotropic forms of plutonium metal. The delta modification is cubic face-centered 1 with a = $4.63\,\mathrm{\mathring{A}}^0$ (at $350^{\circ}\mathrm{C}$), and the epsilon form is cubic body-centered with a = $3.63\,\mathrm{\mathring{A}}^0$ (at $510^{\circ}\mathrm{C}$).

Satisfactory X-ray diffraction patterns of the alpha, beta and gamma forms of plutonium have been available for several years. However, the indexing of these powder patterns has proved to be a very difficult task. The indexing of the pattern of gamma plutonium given in this report succeeded only after a great many hours of intensive work. The patterns of alpha and beta plutonium have not yet been interpreted.

Table I gives the observed intensities and sine squares as obtained from a powder diffraction pattern of gamma plutonium taken with $\text{CuK}\alpha$ -radiation at 226°C . The $\alpha_{1}^{\alpha}\alpha_{2}^{-}$ doublet is separated for $\sin^{2}\theta > 0.400$, and the measurements refer to the stronger component.

The observed sine squares fit the quadratic form

$$\sin^2\theta = 0.05948 \text{ H}_1^2 + 0.01728 \text{ H}_2^2 + 0.005745 \text{ H}_3^2.$$

The corresponding orthorhombic unit cell has dimensions $a_1 = 3.1518 \pm 0.0004kX$, $a_2 = 5.7568 \pm 0.0008kX$, $a_3 = 10.142 \pm 0.002$ kX. Since the experimentally determined density is 17.0, the unit cell contains eight atoms. The calculated density is $\rho = 17.13$.

The translation lattice is face-centered as shown by the fact that reflections are present only from planes for which H_1 H_2 H_3 are either all even or all odd. It is further seen from Table 1 that reflections are missing from planes with H_1 H_2 H_3 all even unless Σ H_1 = 4n.

According to these systematic absences the plutonium atoms are arranged on two interpenetrating face-centered lattices displaced relative to each other by one-fourth of the body diagonal. The positions of the eight atoms in the unit cell are thus: $(0\ 0\ 0)$ $(0\ 1/2\ 1/2)$

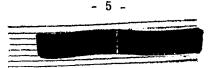


TABLE 1. X-RAY DIFFRACTION DATA FOR GAMMA PLUTONIUM (226°C).

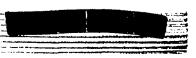
Int.	Sin	2 ₀		Int.	Int.	Si	$_{n^{2}_{ heta}}$		Int.
obs.	obs.	calc.	$^{\rm H_1H_2H_3}$	calc.	obs.	obs.	calc.	$^{\mathrm{H_{1}H_{2}H_{3}}}$	calc.
s	0.0836	0.0830	111	142	w-*	6490	6489	155	8
w	925	9 19	_004.	61	w*	6526	6530	048	8
m+	949	943	022	-115	w-	6648	6649	062	8
m	1297	1290	113	80-	w+	6766	6769	228	15
m -	2218	2209	115	36	vw+	6853	6853	139	8
W+	2265	2257	131	36~	vw+	6970	6967	3 15	. 8
W+	26 16	26 09	202	(28)	w*	7011	70 15	33 1	8
w+	2723	2717	133	26	m-	7300	7300	246	15
W+	2788	2781	026	25	w-	7473	7475	333	8
vw	2860	2853	040	12-	vw	7724	7724	1.1.11	8
W+	3 100	3092	220	(21)	w-	7870	7868	157	8
w	3590	3588	117	17	w-	8125	8124	2.0.10	8
w	3637	3636	135	16	vw-	8273	8273	0.0.12	4
vw	3687	3677	800	8	w-	8345	8346	317	9
W+	3772	3772	044	15	w +*	8392	8394	335	9
m	4012	4011	224	30-	w	8486	8487	066	9
w	4448	4447	206	12 –	w	8800	8798	260	10
w-	5017	5015	137	9	w-	9150	9 15 1	1.3.11	12
w-	5111	5110	151	9	w	9388	9390	171	13
vw	5427	5426	119	9	vw ·	95 17	9517	400	8—
m*	5461	5462	242	18	ms	9717	9706	159	19
vw	5574	5570	153	9			9717	264	38
w*	5597	5588	311	9	m*	9768	9773	337	21
vw+	6046	6048	313	8	W+	9849	9850	173	27
vw+	6458	6458	0.2.10	8	W+	9867	9868	351	2 9

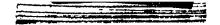
*Coincidence with α_2 - line.

(1/2 0 1/2) (1/2 1/2 0) (1/4 1/4 1/4) (3/4 3/4 1/4) (3/4 1/4 3/4) (1/4 3/4 3/4). This atomic configuration corresponds to the space group symmetry Fddd (${\rm D_{2h}}^{24}$) with the eight plutonium atoms structurally equivalent. A perspective drawing of one unit cell is shown in Figure 1.

The last column of Table 1 gives the intensities calculated from the formula

$$I \alpha |F|^2 \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$$


The absorption and temperature factors have not been taken into account. Observed and calculated intensities should accordingly be compared only for neighboring reflections.


The crystal structure of gamma plutonium is unlike that of any other metal. Each plutonium atom is bonded to ten others at approximately the same distance, as illustrated in Figure 2. The individual interatomic distances are (at 226° C): Pu - 4Pu = 3.020 kX, Pu - 2Pu = 3.152 kX, Pu - 4Pu = 3.285 kX. The average distance of Pu - 10Pu = 3.16A compares to Pu - 12Pu = 3.27A in delta plutonium and Pu - 8Pu = 3.15A in epsilon plutonium.

When allowance is made for the effect of coordination number one finds a metallic radius of 1.60Å for plutonium in the gamma form as compared to the radius 1.63Å in delta plutonium. The difference in radius for the two forms is possibly due to the fact that the transition from the delta to the gamma form is accompanied by the promotion of a fraction of an electron from the 5f to the 6d level. From the value of 1.60Å for the radius of plutonium in the gamma form, one would estimate that there are about three electrons in the 5f shell.

Normal to the a_3 -axis there are pseudo-hexagonal layers, the a_3 -period corresponding to four times the layer separation. The bond lengths within a layer are 3.152 kX and 3.285 kX. The bond length between layers is 3.020 kX.

Table 2 shows the variation of the unit cell dimensions with temperature in the range 161° - 265° C, and Table 3 gives the deduced values of the three principal coefficients of thermal expansion.

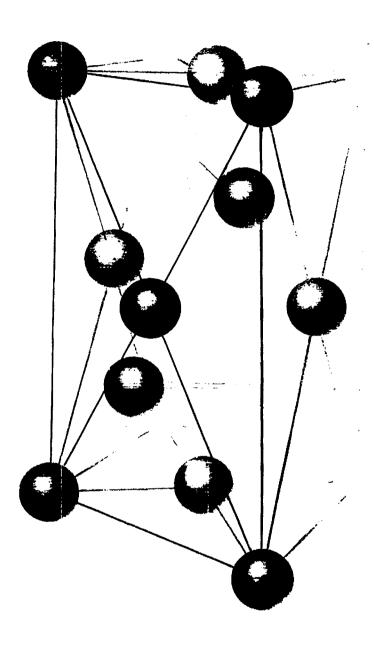
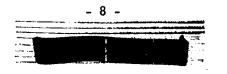
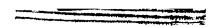




Fig. l. The Unit Cell of Gamma Plutonium.

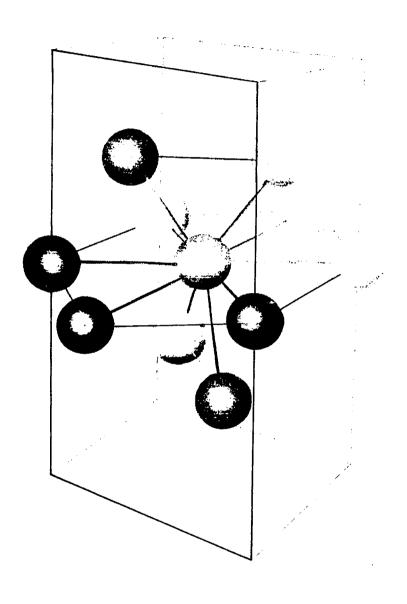
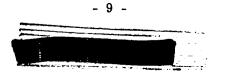



Fig. 2. A portion of the unit cell illustrating the tenfold coordination. Relative to Figure 1, the origin of the unit cell has been displaced by (0 0 1/2).

UNCLASSIFIED

TABLE 2. UNIT CELL DIMENSIONS (IN kX)

AND CALCULATED DENSITY AT

VARIOUS TEMPERATURES

	161	200 ^o	226 ⁰	265 ⁰	Accuracy
$\mathbf{a}_{\mathbf{l}}$	3.1568	3, 1527	3.1518	3.1490	⁺ 0.0004 kX
$\mathbf{a_2}$	5.7400	5.7475	5.7568	5.7670	+ 0.0008
^a 3	10.083	10.111	10.142	10. 180	+ 0.002
ρ	17.26	17.21	17.13	17.06	

TABLE 3. COEFFICIENTS OF THERMAL EXPANSION

^	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	THERMAL EXPANSION
$10^6 \ ^{lpha} 100$		$-22.5 \stackrel{+}{-} 1.0$
$10^6 \alpha_{010}$		+ 47 ⁺ 2
$10^6 \alpha_{001}$		+ 94 + 4

UNCLASSIFIED

REFERENCES

- ¹ R. C. L. Mooney and W. H. Zachariasen, CK-1367, CK-1377, CK-1968 and CN-2069.
- F. J. Schnettler and E. R. Jette, LAMS-211, p. 21. F. H. Ellinger of Los Alamos Scientific Laboratory has obtained evidence that 4.624 ± 0.001 kX is a somewhat better value for the unit cell edge of delta plutonium at 350°C. However, there is good reason to suspect that the specific volume of the delta phase at any given temperature is strongly dependent on previous history, and it is not clear that "equilibrium" values of unit cell dimensions have ever been determined.
- F. J. Schnettler and E. R. Jette, LAMS-249, p. 17.

REPORT LIBRARY

RECEIPT

APPROVED FOR PUBLIC RELEASE